

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

BEASTPostProc

THIS SCRIPT aids post-processing of BEAST output files resulting from runs using the standard BEAST divergence time approach (Drummond et al. 2006), or the multispecies coalescent as implemented in the *BEAST model (Heled & Drummond 2010). Specifically, this code 1) summarizes the length and posterior distributions of parameters in the run using LogAnalyser, and then 2) obtains 5000 random post-burnin trees and uses them to infer a maximum clade credibility (MCC) tree annotated with posterior probabilities and node divergence time estimates in TreeAnnotator. The code is written in a way to automate these common procedures by taking advantage of available utilities for post-processing that come with the BEAST (v1.8.3) distribution.

BEAST v1.8.3++ must be installed locally for this code to work. In addition, it is assumed that you know the absolute path to these programs, or that you have already placed the bin folder holding “loganalyser” and “treeannotator” executables in your path, so that they are available from the command line. Prior to running the current version of this script, the user must open the script and replace absolute paths to the above programs with the absolute paths on their machine.

If you have run BEAST, this code processes the posterior distributions of gene trees only. However, if you are processing results of a *BEAST run, this code processes the gene tree and species tree results in the run directory. Files are stored in folders that currently have long names; this is on my list of needed bug fixes.

For interpreting files output by this script, please refer to the BEAST websites (http://beast.community and http://beast2.org), published papers on the software (e.g. Drummond et al., 2012), manuals and other docs included in the BEAST distributions, and also tutorials and comments on using BEAST on my website (http://www.justinbagley.org).

References:

	Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969-1973.

	Heled J, Drummond AJ (2010) Bayesian inference of species trees from multilocus data. Mol Biol Evol. 27(3):570–580.

August 22, 2017
Justin C. Bagley, Richmond, VA

BEASTReset

THI SCRIPT expects to start from a set of BEAST run sub-folders in the current working directory. Each sub-folder will correspond to a run that has been (or will be) submitted to a remote supercomputing cluster with a Linux operating system, and either a TORQUE/PBS or SLURM scheduling and resource management system. As a consequence, each run sub-folder will contain a run submission shell script for queuing on the supercomputer. BEASTReset saves the user time by automating the resetting of the random starting number seeds in each submission shell script.

This is very useful when the set of run folders has been transferred and queued on the supercomputer, and the user suspects that the XML files are fine, but some runs failed because BEAST failed to find a good initialization state (e.g. prior likelihood). This problem could be overcome by using a different random number seed. Under such cases, which are quite common, BEAST will print all the parameters contributing to a poor starting point and then issue an error message including a line saying ‘Fatal exception: Could not find a proper state to initialise. Perhaps try another seed.’ Here is an example of this type of error, which BEAST will kick out to screen (when run interactively) or to STDOUT:

 P(posterior) = -Infinity (was -Infinity)
 P(speciescoalescent) = -Infinity (was -Infinity)
 P(SpeciesTreePopSize.Species1) = -7.0 (was -7.0)
 P(treePrior.t:balf_tree) = -Infinity (was -Infinity)
 P(prior) = NaN (was NaN) **
 P(BirthDeath.t:Species) = NaN (was NaN) **
 P(GammaShapePrior.s:p10_site) = -1.0 (was -1.0)
 P(GammaShapePrior.s:p11_site) = -1.0 (was -1.0)
 P(GammaShapePrior.s:p12_site) = -1.0 (was -1.0)
 P(GammaShapePrior.s:p13_site) = -1.0 (was -1.0)
 P(GammaShapePrior.s:p14_site) = -1.0 (was -1.0)
 P(GammaShapePrior.s:p15_site) = -1.0 (was -1.0)
 .
 .
 .
java.lang.RuntimeException: Could not find a proper state to initialise. Perhaps try another seed.
 at beast.core.MCMC.run(Unknown Source)
 at beast.app.BeastMCMC.run(Unknown Source)
 at beast.app.beastapp.BeastMain.<init>(Unknown Source)
 at beast.app.beastapp.BeastMain.main(Unknown Source)
Fatal exception: Could not find a proper state to initialise. Perhaps try another seed.
java.lang.RuntimeException: An error was encounted. Terminating BEAST
 at beast.app.util.ErrorLogHandler.publish(Unknown Source)
 at java.util.logging.Logger.log(Logger.java:738)
 at java.util.logging.Logger.doLog(Logger.java:765)
 at java.util.logging.Logger.log(Logger.java:788)
 at java.util.logging.Logger.severe(Logger.java:1463)
 at beast.app.beastapp.BeastMain.<init>(Unknown Source)
 at beast.app.beastapp.BeastMain.main(Unknown Source)

DEPENDENCIES

Currently, the only dependency for BEASTReset is Python [https://www.python.org/downloads/] v2.7++ or v3++. BEASTReset is part of the PIrANHA [https://github.com/justincbagley/PIrANHA] software repository (Bagley 2017). See the BEASTReset and PIrANHA README files for additional information.

USAGE

This script accepts as mandatory input the name of the where the program should be run. Options are as follows (first part of Usage text):

 BEASTRunner

BEASTRunner

THIS SCRIPT automates conducting multiple runs of BEAST1 or BEAST2 (Drummond et al. 2012; Bouckaert et al. 2014) XML input files on a remote supercomputing cluster that uses SLURM resource management with PBS wrappers, or a PBS resource management system.

The code starts from a single working directory on the user’s local machine, which contains one or multiple XML input files with extension ‘*run.xml’ (where * is any set of alphanumeric characters separated possibly by underscores but no spaces). These files are identified and run through the BEASTRunner pipeline, which involves four steps, as follows: 1) copy each XML file four times to create 5 separate run XML files; 2) make directories for runs (1 per XML) and create a shell script with the name ‘beast_pbs.sh’ that is specific to the input and can be used to submit job to supercomputer and move this PBS shell script into the corresponding folder; 3) create a batch submission file (PBS format) and move it and all run folders to the desired working directory on the supercomputer; 4) execute the batch submission file on the supercomputer so that all jobs are submitted to the supercomputer queue.

Like other software programs such as BPP, G-PhoCS, and GARLI, some information that is used by BEASTRunner.sh is fed to the program by culling the data from an external configuration file, named ‘beast_runner.cfg’. There are six entries that users can supply in this file. However, three of these are essential for running BEAST using the BEASTRunner script, including: ssh user account info, the path to the parent directory for BEAST runs on the supercomputer, and the user’s email address. Users must fill this information in and save a new version of the .cfg file in the working directory on their local machine prior to calling the program. Only then can the user call the program by opening a terminal window, typing “./BEASTRunner.sh”, and pressing return.

It is assumed that BEAST1 (e.g. v1.8.3) or BEAST2 (e.g. 2.4++) is installed on the supercomputer, and that the user can provide absolute paths to the software in the configuration file. During generation of the BEAST submission scripts (STEP #2 above), there are options within the shell script template area of the BEASTRunner code (on Lines 268-288) that could (and probably should) be edited by the user, but which provide an illustration of how to load prerequisite Java and Beagle library modules on a supercomputing cluster that uses modules. However, especially when many different versions are available, or modules are unavailable on your supercomputer, it will be more convenient to supply the whole path to BEAST executables instead of using module code like this.

POTENTIAL ERRORS / ISSUES TO AVOID:

Users will need to be especially mindful of the following potential issues, to avoid them and keep BEASTRunner from failing on the first go-throughs:

	Like most other scripts within PIrANHA, BEASTRunner assumes that the user has set
up passwordless ssh acces. See notes within the script, and in the PIrANHA README
file for links and information on how to set this up PRIOR TO RUNNING.

	The supercomputer that BEASTRunner was initially developed to work on uses modules
to load different versions of BEAST and java/java runtime environment on which
BEAST software depends. Make sure to modify the module calls in the script to match
your cluster and needs, or remove them as needed.
- If you run BEASTRunner on the BYU FSL supercomputer, it will almost run out
of the box. You will only need to point the BEAST paths to your local installs
using the configuration file, or edit the module code if needed.
- Users of other supercomputing clusters will likely need to make more substantial
changes to the code before running (e.g. removing module code during shell
script generation).

	If your supercomputing cluster does not have a PBS wrapper, then the shell scripts
generated by BEASTRunner to submit each unique job/XML file will not be correctly
read and interpreted by your batch management software. In this case, you will
most likely need to modify the text echoed to file on Lines 87-129 to take the
format of a SLURM sbatch script. In future versions of BEASTRunner, I will extend
the code to accomodate both TORQUE/PBS resource management and SLURM Workload
Manager, so that you can simply direct the script to use one or the other.

REFERENCES

	Bouckaert R, Heled J, Künert D, Vaughan TG, Wu CH, Xie D, Suchard MA, Rambaut A, Drummond AJ
(2014) BEAST2: a software platform for Bayesian evolutionary analysis. PLoS Computational
Biology, 10, e1003537.

	Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the
BEAST 1.7. Molecular Biology and Evolution, 29, 1969-1973.

August 22, 2017
Justin C. Bagley, Richmond, VA, USA

 ExaBayesPostProc

ExaBayesPostProc

THIS SCRIPT aids post-processing of ExaBayes v1.4 (Aberer et al. 2014) output files by1) summarizing run, tree, and parameter characteristics, and 2) modifying ExaBayes tree files (i.e. with “topologies” in their filenames), summarizing the posterior distribution of trees, and computing a 50% majority-rule consensus tree with branch lengths and Bayesian posterior probabilities >=50% along the nodes, using MrBayes v3.2(Ronquist et al. 2011).

First, it is assumed that ExaBayes is installed locally and ExaBayes and the utility programs bundled with the ExaBayes distribution (in /…/exabayes-1.4.1/bin/bin/), including credibleSet, extractBips, and postProcParam, are in your path and thus areavailable from the command line interface. This code also assumes that MrBayes v3.2 is installed with the executable named “mb” and available from the command line. To ensure required software is available at the command line, either 1) add directories the executables are located in to your PATH environmental variable, or 2) copy them to an appropriate folder that is already located in your path, such as ‘/usr/local/bin’ on macs. To do #1 on Mac/UNIX/LINUX systems, you can edit your .bash_profile file to include the ExaBayes and MrBayes bin folders. Alternatively, you could simply supply the absolute paths to all software programs listed in the script (not recommended).

For interpreting files output by this script, please refer to the ExaBayes and MrBayes manuals (PDFs) included in the manual or documentation folders of their distributions, as well as the papers cited below.

REFERENCES

	Aberer AJ, Kobert K, Stamatakis A (2014) ExaBayes: Massively parallel Bayesian tree inference for the whole-genome era. Mol. Biol. Evol. 31(10): 2553-2556. doi: 10.1093/molbev/msu236.

	Ronquist F, Teslenko M, van der Mark P, Ayres D, Darling A, H¨ohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2011) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology.

August 23, 2017 Justin C. Bagley, Richmond, VA, USA

 MLEResultsProc

MLEResultsProc

THIS SCRIPT aids post-processing of multiple BEAST1 or BEAST2 (Drummond et al. 2012; Bouckaert et al. 2014) runs for marginal-likelihood or Bayes factor model comparison, for example as in the Bayes factor delimitation (BFD) procedure of Grummer et al. (2014). The script expects that the user has conducted multiple BEAST runs that each included a marginal-likelihood estimation step, using either path sampling (PS) and stepping-stone sampling (SS) (Xie et al. 2011; Baele et al. 2012). Marginal-likelihood estimation should be performed on all models using the same software program, because while MLEResultsProc can accommodate output files from either BEAST v1++ or BEAST v2++, but not a mixture of output files from both programs. The user must then copy the “.out” files from each run (making sure they have unique names, e.g. matching the corresponding model) into a working directory for MLEResultsProc analysis.

Under this scenario, ‘MLEResultsProc.sh’ automates extracting the path sampling (PS) and/or stepping-stone sampling (SS) marginal-likelihood estimates from the final sections of the output file for each model, arranging the MLE estimates into a summary table file in the current working dir, and then loading the results file into R and computing Bayes factor tables comparing the models.

Screen output

Here, I provide an example of output to screen during a recent MLEResultsProc analysis:

$./MLEResultsProc.sh

##
MLEResultsProc v1.2, August 2017
##

INFO | Wed Aug 23 10:09:30 EDT 2017 | STEP #1: SETUP.
INFO | Wed Aug 23 10:09:30 EDT 2017 | STEP #2: CHECK BEAST VERSION (DETECT AND ACCOMODATE RESULTS FILES FROM BEAST1 OR BEAST2).
INFO | Wed Aug 23 10:09:31 EDT 2017 | STEP #3: EXTRACT MLE RESULTS FROM OUTPUT FILES.
INFO | Wed Aug 23 10:09:31 EDT 2017 | BEAST v2+ output files detected; conducting post-processing accordingly...
INFO | Wed Aug 23 10:09:31 EDT 2017 | Extracting MLE results from the following output files:
balf_M1_ari-balf.out
balf_M2_long-balf.out
balf_M3_ari-long.out
strob_M1_aya-flex.out
strob_M2_strob-flex.out
strob_M3_aya-strob.out
INFO | Wed Aug 23 10:09:32 EDT 2017 | STEP #4: ARRANGE MLE RESULTS IN TAB-DELIMITED FILE WITH HEADER.
INFO | Wed Aug 23 10:09:32 EDT 2017 | Placing results into 'MLE.output.txt' in current working directory.
INFO | Wed Aug 23 10:09:32 EDT 2017 | Cleaning up...
INFO | Wed Aug 23 10:09:32 EDT 2017 | STEP #5: LOAD MLE RESULTS INTO R AND COMPUTE BAYES FACTOR TABLES.
INFO | Wed Aug 23 10:09:32 EDT 2017 | Calculating Bayes factors in R using '2logeB10.R' script...
INFO | Wed Aug 23 10:09:33 EDT 2017 | R calculations complete.
INFO | Wed Aug 23 10:09:33 EDT 2017 | Done summarizing marginal-likelihood estimation results in BEAST using MLEResultsProc.
INFO | Wed Aug 23 10:09:33 EDT 2017 | Bye.

Bayes factors

The Bayes factors output by this procedure are 2loge(B10) Bayes factors (Kass and Raftery 1995). The scale for interpreting these Bayes factors is shown at the bottom right of p. 777 in Kass and Raftery (1995), which I reproduce here for convenience:

2loge(B10)	*Evidence against null hypothesis (H0)
:———————	:——————————————
0 to 2	Not worth more than a bare mention
2 to 6	Positive
6 to 10	Strong
>10	Very strong [“decisive”]

*Bayes factors provide “weight of evidence” for or against a hypothesis; and during a MLEResultsProc analysis, Bayes factors are output as pairwise, “row-by-column” comparisons. Thus, a positive 2loge(B10) Bayes factor value for the model in a given row is indicative that that model has greater weight of evidence than the model in the corresponding column of the comparison.

To conduct the R analysis, the ‘2logeB10.r’ R script present in the MLEResultsProc folder is simply called from within the MLEResultsProc.sh script. If PS- and SS-based marginal-likelihood estimates are available in the output files being analyzed, then, in addition to a Bayes factor table, a second table will be output by R showing differences in the Bayes factors from the different methods, for all pairwise comparisons. This allows the user to easily see how the magnitude of Bayes factor support changes with a change in method.

REFERENCES

	Baele G, Lemey P, Bedford T, Rambaut A, Suchard MA, Alekseyenko AV (2012) Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Molecular Biology and Evolution, 29, 2157-2167.

	Bouckaert R, Heled J, Künert D, Vaughan TG, Wu CH, Xie D, Suchard MA, Rambaut A, Drummond AJ (2014) BEAST2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 10, e1003537.

	Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29, 1969-1973.

	Grummer JA, Bryson RW Jr, Reeder TW. 2014. Species delimitation using Bayes factors: simulations and application to the Sceloporus scalaris species group (Squamata: Phrynosomatidae). Systematic Biology, 63, 119–133.

	Kass RE, Raftery AE (1995) Bayes factors. Journal of the American Statistical Association, 90, 773–795.

	Xie W, Lewis PO, Fan Y, Kuo L, Chen MH (2011) Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Systematic Biology, 60, 150-160.

August 22, 2017
Justin C. Bagley, Richmond, VA, USA

 MrBayesPostProc

MrBayesPostProc

THIS SCRIPT runs a simple program for post-processing results of a MrBayes v3.2+ (Ronquist et al. 2012) run, whose output files are present in the current working directory (pwd). This script prepares the output files in pwd, and then summarizes trees and their posterior probabilities (using the ‘sumt’ command), and parameters of the specified model (using the ‘sump’ command) using MrBayes. Options are provided for specifying the burnin fraction, and for calling stepping-stone (SS) analysis (Xie et al. 2011; Baele et al. 2012) to robustly estimate the log marginal likelihood of the model/analysis, whose details must be provided in a MrBayes block at the end of the input NEXUS file in the current working directory.

USAGE

Use the -h flag to access the help text for the program, which defines and describes each of the options. The current help text reads as follows:

Usage: MrBayesPostProc.sh [Help: -h help] [Options: -b s g d t V --version] [stdin:] <workingDir>
 ## Help:
 -h help text (also: -help)

 ## Options:
 -b relBurninFrac (def: $MY_RELBURNIN_FRAC) fraction of trees to discard as 'burn-in'
 -s SS (def: 0, no stepping-stone (SS) analysis conducted; 1, run SS analysis) allows
 calling stepping-stone analysis starting from NEXUS in current <workingDir>
 -g SSnGen (def: $MY_SS_NGEN) if 1 for SS above, allows specifying the number of total
 SS sampling iterations (uses default number of steps, 50; total iterations will
 be split over 50 steps)
 -d SSDiagFreq (def: $MY_SS_DIAGNFREQ) if 1 for SS above, this specifies the diagnosis
 (logging) frequency for parameters during SS analysis, in number of generations
 -t deleteTemp (def: 1, delete temporary files; 0, do not delete temporary files) calling
 0 will keep temporary files created during the run for later inspection
 -V version (also: --version) echo version and exit

 OVERVIEW
 Runs a simple script for post-processing results of a MrBayes v3.2+ (Ronquist et al. 2012)
 run, whose output files are assumed to be in the current working directory. This script preps
 the output files in pwd, and then summarizes trees and their posterior probabilities (sumt),
 and parameters of the specified model (sump) using MrBayes. Options are provided for specifying
 the burnin fraction, and for calling stepping-stone analysis (Xie et al. 2011; Baele et al.
 2012) to robustly estimate the log marginal likelihood of the model/analysis, whose details
 must be provided in a MrBayes block at the end of the input NEXUS file in the current dir.

 CITATION
 Bagley, J.C. 2019. PIrANHA v0.1.7. GitHub repository, Available at:
 <http://github.com/justincbagley/PIrANHA>.

 REFERENCES
 Baele G, Lemey P, Bedford T, Rambaut A, Suchard MA, Alekseyenko AV (2012) Improving the
 accuracy of demographic and molecular clock model comparison while accommodating
 phylogenetic uncertainty. Molecular Biology and Evolution, 29, 2157-2167.
 Ronquist F, Teslenko M, van der Mark P, Ayres D, Darling A, et al. (2012) MrBayes v. 3.2:
 efficient Bayesian phylogenetic inference and model choice across a large model space.
 Systematic Biology, 61, 539-542.
 Xie W, Lewis PO, Fan Y, Kuo L, Chen MH (2011) Improving marginal likelihood estimation for
 Bayesian phylogenetic model selection. Systematic Biology, 60, 150-160.

Created by Justin Bagley on Thu, 4 May 2017 22:39:41 -0400.
Copyright (c) 2017-2019 Justin C. Bagley. All rights reserved.

A ‘basic’ MrBayesPostProc run summarizes output of a given MrBayes run (folder) using default burnin fractions and other settings, and is called as follows:

$ cp ./MrBayesPostProc.sh /path/to/MrBayes/analysis/folder
$ cd /path/to/MrBayes/analysis/folder
$ chmod u+x ./*.sh
$./MrBayesPostProc.sh .

Stepping-stone sampling can be specified by passing the -s, -g, and -d flags to MrBayesPostProc. As an example, you might call an SS analysis with half a million SS iterations, while logging parameters to file every 5000 steps, like this:

$ cp ./MrBayesPostProc.sh /path/to/MrBayes/analysis/folder
$ cd /path/to/MrBayes/analysis/folder
$ chmod u+x ./*.sh
$./MrBayesPostProc.sh -s1 -g500000 -d5000 .

OUTPUT

Below is an example of output to screen during a recent basic MrBayesPostProc run on a supercomputing cluster, which called no option flags. The analysis took 1 second.

$./MrBayesPostProc.sh

##
MrBayesPostProc v1.4, December 2017
##
INFO | Sat Dec 2 11:52:28 MST 2017 | STEP #1: SETUP VARIABLES.
INFO | Sat Dec 2 11:52:28 MST 2017 | Fixing NEXUS filename...
INFO | Sat Dec 2 11:52:28 MST 2017 | STEP #2: REMOVE MRBAYES BLOCK FROM NEXUS FILE.
INFO | Sat Dec 2 11:52:28 MST 2017 | STEP #3: CREATE BATCH FILE TO RUN IN MRBAYES.
INFO | Sat Dec 2 11:52:28 MST 2017 | Making batch file...
INFO | Sat Dec 2 11:52:28 MST 2017 | MrBayes batch file (batch.txt) successfully created.
INFO | Sat Dec 2 11:52:28 MST 2017 | STEP #4: SUMMARIZE RUN AND COMPUTE CONSENSUS TREE IN MRBAYES.
INFO | Sat Dec 2 11:52:28 MST 2017 | STEP #5: CLEANUP FILES.
INFO | Sat Dec 2 11:52:28 MST 2017 | Done with post-processing of MrBayes results using MrBayesPostProc.
INFO | Sat Dec 2 11:52:28 MST 2017 | Bye.

REFERENCES

	Baele G, Lemey P, Bedford T, Rambaut A, Suchard MA, Alekseyenko AV (2012) Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Molecular Biology and Evolution, 29, 2157-2167.

	Ronquist F, Teslenko M, van der Mark P, Ayres D, Darling A, et al. (2012) MrBayes v. 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539-542.

	Xie W, Lewis PO, Fan Y, Kuo L, Chen MH (2011) Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Systematic Biology, 60, 150-160.

March 6, 2019
Justin C. Bagley, St. Louis, MO

 PFSubsetSum

PFSubsetSum

THIS SCRIPT automates calculating basic summary statistics for each subset in the final ‘best’ partitioning scheme identified for a dataset by PartitionFinder (Lanfear et al. 2012, 2016). Within each run folder, PartitionFinder creates a sub-folder for the analysis, named ‘analysis’, in which a final ‘best_scheme.txt’ file is created that contains information on the optimized partitioning scheme and models of sequence evolution for the dataset. PFSubsetSum.sh is made to run within the analysis folder, where it will calculate (1) numCharsets (number of character sets) and (2) subsetLengths (alignment lengths in bp) for each subset in the scheme.

Subset lengths are calculated by creating (and subsequently removing) an Rscript named GetSubsetLength.r to perform the corresponding calculation; thus, as with several other PIrANHA [http://github.com/justincbagley/PIrANHA] scripts/utilities, R [https://cran.r-project.org/] is an important dependency of this software. These basic statistics are written in table format to a file named ‘sumstats.txt’, where they are saved alongside subset names, models, and other subset information from PartitionFinder. Testing has been conducted on PartitionFinder v1.1.1++.

USAGE

$ cp PFSubsetSum.sh /path/to/PartitionFinder/analysis/folder
$ cd /path/to/PartitionFinder/analysis/folder
$ chmod u+x ./*.sh
$./PFSubsetSum.sh

OUTPUT

Below, I provide an example of output to screen during a recent PFSubsetSum run on a phylogenomic dataset. The analysis took 6 seconds.

$./PFSubsetSum.sh

##
PFSubsetSum v1.1, August 2017
##

INFO | Tue Aug 22 18:11:29 EDT 2017 | STEP #1: SETUP.
INFO | Tue Aug 22 18:11:29 EDT 2017 | Setting working directory to: ../strob_greedy_beast_run1_26subsets/analysis
INFO | Tue Aug 22 18:11:29 EDT 2017 | STEP #2: DETECT AND READ PartitionFinder INPUT FILE.
INFO | Tue Aug 22 18:11:29 EDT 2017 | Found PartitionFinder 'best_scheme.txt' input file...
INFO | Tue Aug 22 18:11:29 EDT 2017 | STEP #3: COMPUTE SUMMARY STATISTICS FOR EACH SUBSET.
INFO | Tue Aug 22 18:11:29 EDT 2017 | Extracting and organizing subsets...
INFO | Tue Aug 22 18:11:29 EDT 2017 | The best scheme from PartitionFinder contains 26 subsets.
INFO | Tue Aug 22 18:11:29 EDT 2017 | 1. Calculating numCharsets (number of character sets) within each subset in the scheme...
INFO | Tue Aug 22 18:11:30 EDT 2017 | 2. Calculating subsetLengths (alignment lengths in bp) for each subset in the scheme...
INFO | Tue Aug 22 18:11:35 EDT 2017 | 3. Extracting subsetModels (selected models of DNA sequence evolution) for each subset in the scheme...
INFO | Tue Aug 22 18:11:35 EDT 2017 | 4. Making file 'sumstats.txt' with subset summary statistics table...
INFO | Tue Aug 22 18:11:35 EDT 2017 | Done calculating summary statistics for subsets in your best PartitionFinder scheme.
INFO | Tue Aug 22 18:11:35 EDT 2017 | Bye.

The ‘sumstats.txt’ file output by the program is easy to interpret and looks like something like this (i.e. like the best_scheme.txt schemes block, but with new columns containing the summary statistics calculated by PFSubsetSum):

###################### PartitionFinder Subsets Summary Statistics ########################
Subset numCharsets subsetLength subsetModel | partitions
p1 16 7579 HKY+G | 0_10054_01WHISP, 0_10267_01WHISP, 0_11508_01WHISP, 0_14221_01WHISP, 0_1949_01WHISP, 0_6448_02WHISP, 0_6659_01WHISP, 2_2501_01WHISP, 2_2960_02WHISP, 2_3591_03WHISP, 2_3852_01WHISP, 2_6491_01WHISP, 2_8627_01WHISP, 2_8852_01WHISP, 2_9665_01WHISP, CL1077Contig1_02WHISP | 1-437, 438-848, 3646-4111, 14072-14681, 23627-23917, 30328-30922, 31352-31587, 42763-43200, 44122-44689, 45015-45519, 45973-46439, 52533-53048, 55938-56404, 56405-56818, 57723-58164, 58165-58880 | ./analysis/phylofiles/a0677dd7f36fc5c3139676cb0e5cb235.phy
p2 26 11791 HKY+G | 0_10307_01WHISP, 0_10706_01WHISP, 0_11270_01WHISP, 0_12190_02WHISP, 0_12329_02WHISP, 0_12745_01WHISP, 0_1347_01WHISP, 0_14122_02WHISP, 0_16889_02WHISP, 0_2433_01_final, 0_8737_01WHISP, 1_1609_01WHISP, 2_2799_03WHISP, 2_3319_01WHISP, 2_3867_02WHISP, 2_4183_01WHISP, 2_5483_02WHISP, 2_9466_01WHISP, CL1524Contig1_03WHISP, CL1634Contig1_03WHISP, CL1659Contig1_02WHISP, CL1692Contig1_05WHISP, CL1694Contig1_02WHISP, CL180Contig1_03WHISP, CL1905Contig1_03WHISP, CL3321Contig1_03WHISP | 849-1197, 1646-2085, 2557-2966, 6108-6517, 7224-7755, 8179-8624, 11664-12065, 13701-14071, 19597-20262, 24426-24855, 35813-36261, 40658-41140, 43201-43657, 44690-45014, 46440-47122, 47621-48059, 48730-49232, 56819-57253, 60288-60736, 61377-61611, 61828-62281, 62584-62976, 62977-63492, 64229-64857, 65764-66240, 69648-70055 | ./analysis/phylofiles/7457b7590e06cbb49b85ba16d16150b4.phy
p3 4 1724 GTR+I+G | 0_10602_01WHISP, 0_10754_01WHISP, 0_18439_02WHISP, 0_9457_02WHISP | 1198-1645, 2086-2556, 23370-23626, 38673-39220 | ./analysis/phylofiles/d44d9722ea5ed86e661961ebde89b679.phy
p4 21 9077 TrN+G | 0_11324_01WHISP, 0_12190_01WHISP, 0_12929_02WHISP, 0_12978_02WHISP, 0_13240_01WHISP, 0_15075_01WHISP, 0_15867_01WHISP, 0_3128_02WHISP, 0_3192_01WHISP, 0_4541_02WHISP, 0_6259_01WHISP, 0_7009_01WHISP, 0_7793_01WHISP, 0_9389_01WHISP, 0_9462_01WHISP, 2_2952_01WHISP, 2_5967_01WHISP, CL149Contig3_04WHISP, CL1879Contig1_02WHISP, CL1966Contig1_05WHISP, CL2332Contig1_01WHISP | 2967-3245, 5642-6107, 8625-9430, 9431-9946, 11204-11663, 16093-16499, 18049-18521, 25722-26180, 26181-26776, 27836-28168, 29916-30327, 32902-33310, 33311-33552, 37696-38217, 39221-39686, 43658-44121, 50398-50654, 59745-60058, 65507-65763, 66241-66744, 67221-67655 | ./analysis/phylofiles/6210f87df73f377d6d3535a802691931.phy
p5 9 3263 K80+G | 0_11504_01WHISP, 0_11649_03WHISP, 0_18267_01WHISP, 0_8187_02WHISP, 2_6731_01WHISP, 2_7182_01WHISP, CL1521Contig1_01WHISP, CL1806Contig1_01WHISP, CL3271Contig1_02WHISP | 3246-3645, 4112-4455, 22476-22927, 33953-34275, 53049-53484, 54478-54941, 60059-60287, 63899-64228, 69363-69647 | ./analysis/phylofiles/d73b20551946c5c58942ae08f02a94bb.phy
p6 7 3395 HKY+G | 0_11980_01WHISP, 0_12730_01WHISP, 0_16619_01WHISP, 0_4032_02WHISP, 0_4756_01WHISP, 2_6355_02WHISP, CL3097Contig1_01WHISP | 4456-5167, 7756-8178, 18522-19285, 26984-27376, 28169-28599, 51730-52040, 69002-69362 | ./analysis/phylofiles/09d75a8e74ab1f31a3b60a53516beec3.phy
p7 23 10129 HKY+G | 0_12156_02WHISP, 0_13913_02WHISP, 0_14837_01WHISP, 0_15329_01WHISP, 0_17206_01WHISP, 0_17215_01WHISP, 0_17247_02WHISP, 0_4105_01WHISP, 0_6878_01WHISP, 0_7844_01WHISP, 0_846_01WHISP, 0_8844_01WHISP, 0_9408_01WHISP, 0_9922_01WHISP, 2_3726_02WHISP, 2_5064_01WHISP, 2_5668_01WHISP, 2_6906_01WHISP, CL1343Contig1_05WHISP, CL1367Contig1_03WHISP, CL1646Contig1_01WHISP, CL2475Contig1_02WHISP, CL3036Contig1_01WHISP | 5168-5641, 12446-12835, 15167-15611, 16966-17418, 20673-21098, 21099-21575, 21576-21997, 27377-27835, 32047-32485, 33553-33952, 34276-34854, 36262-36803, 38218-38672, 40127-40657, 45520-45972, 48060-48729, 49233-49942, 53975-54477, 59190-59418, 59419-59744, 61612-61827, 67656-67905, 68415-68694 | ./analysis/phylofiles/40ada7493a15523abe0a7f8ffb3d6b4f.phy
p8 13 6810 HKY+G | 0_12216_02WHISP, 0_13058_01WHISP, 0_17017_01WHISP, 0_18296_01WHISP, 0_5601_01WHISP, 0_6116_01WHISP, 0_7001_01WHISP, 0_9383_01WHISP, 2_10212_01WHISP, 2_5724_02WHISP, 2_6313_01WHISP, 2_9542_01WHISP, CL3795Contig1_01WHISP | 6518-7223, 9947-10588, 20263-20672, 22928-23369, 29060-29424, 29425-29915, 32486-32901, 37215-37695, 41547-42267, 49943-50397, 51083-51729, 57254-57722, 70867-71431 | ./analysis/phylofiles/0c52856c4073539400854f18489db02c.phy
p9 2 499 SYM+I+G | 0_13152_03WHISP, CL1213Contig1_01WHISP | 10589-10778, 58881-59189 | ./analysis/phylofiles/2d06cb5c753bf000a663fca948ca2d0d.phy
p10 6 2237 SYM+G | 0_13237_01WHISP, 0_14976_01WHISP, 2_4107_01WHISP, CL1669Contig1_04WHISP, CL1848Contig1_01WHISP, CL363Contig1_04WHISP | 10779-11203, 15612-16092, 47123-47620, 62282-62583, 64858-65177, 70372-70582 | ./analysis/phylofiles/da2ad9cbb18ff2a16249b863b2fe0469.phy
p11 8 3015 HKY+I+G | 0_13680_01WHISP, 0_13957_02WHISP, 0_13978_01WHISP, 0_15762_01WHISP, 2_7189_01WHISP, CL1767Contig1_02WHISP, CL2565Contig1_03WHISP, CL2637Contig1_04WHISP | 12066-12445, 12836-13295, 13296-13700, 17680-18048, 54942-55427, 63493-63898, 67906-68173, 68174-68414 | ./analysis/phylofiles/d0fb53f382d811e5cfcbaaf00f35d250.phy
p12 2 914 TrN+G | 0_1439_01WHISP, 0_6465_01WHISP | 14682-15166, 30923-31351 | ./analysis/phylofiles/331a6f383620cd7ab827aec5c9337670.phy
p13 10 3688 K80+I+G | 0_15187_01WHISP, 0_15361_01WHISP, 0_18261_01WHISP, 0_3073_01WHISP, 1_5675_01WHISP, 2_684_01WHISP, CL1588Contig1_04WHISP, CL1852Contig1_01WHISP, CL305Contig1_05WHISP, CL3770Contig1_01WHISP | 16500-16965, 17419-17679, 21998-22475, 25282-25721, 41141-41546, 53485-53974, 60947-61173, 65178-65506, 68695-69001, 70583-70866 | ./analysis/phylofiles/d7817c6e7d92a5ab1b507b1b383b59b3.phy
p14 13 4872 K80+G | 0_1688_02WHISP, 0_2354_01WHISP, 0_3969_01WHISP, 0_6683_01WHISP, 0_8531_01WHISP, 0_9749_01WHISP, 2_6052_01WHISP, 2_6457_01WHISP, 2_8011_02WHISP, CL1536Contig1_03WHISP, CL206Contig1_03WHISP, CL2123Contig1_03WHISP, CL357Contig1_09WHISP | 19286-19596, 23918-24425, 26777-26983, 31588-32046, 34855-35369, 39687-40126, 50655-51082, 52041-52532, 55428-55937, 60737-60946, 66745-66952, 66953-67220, 70056-70371 | ./analysis/phylofiles/60f79d2e10985329d220285d5c099101.phy
p15 5 1995 HKY+G | 0_2456_01WHISP, 0_5364_02WHISP, 0_9063_01WHISP, 2_1030_01WHISP, CL1614Contig1_04WHISP | 24856-25281, 28600-29059, 36804-37214, 42268-42762, 61174-61376 | ./analysis/phylofiles/fd6e58f0cdedd9a865608edbb4b7033d.phy
p16 1 443 K80+I+G | 0_8683_01WHISP | 35370-35812 | ./analysis/phylofiles/0940cc0d1e5407a4ffe4257a5c084c0b.phy

This output can easily be placed into a summary table in the main text of a manuscript, or in an Appendix or other Supporting Information file for your manuscript.

REFERENCES

	Lanfear R, Calcott B, Ho SYW, Guindon S (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29,1695-1701.

	Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B (2016) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution.

March 6, 2019
Justin C. Bagley, St. Louis, MO, USA

 PHYLIP2NEXUS

PHYLIP2NEXUS

THIS SHELL script, PHYLIP2NEXUS.sh, converts a single PHYLIP-formatted DNA sequence alignment file present in the current working directory, and passed to the program as stdin, into NEXUS format. The starting file must have the extension “.phy”, and the first line of this file must contain the number of taxa, followed by one space, followed by the number of characters in the alignment. Some actions are echoed to screen. The output is a single NEXUS file with the name, “BASENAME.nex”, where “BASENAME” is the base or root name of the original PHYLIP file. For example, in a starting file named “Smerianae_ND4.phy,” BASENAME would be “Smerianae_ND4” and the resulting output file would be named “Smerianae_ND4.nex”.

I have not had time to add help texts yet, but I recently added two new options–one for specifying a partitions file (-p), and another related option for specifying the format of the partitions file (-f). If the partitions file is given, then the script expects partitions file format to be of either RAxML format (specified with ‘raxml’) or NEXUS format (‘NEX’ or ‘nex’). The RAxML format is the same format used in RAxML (e.g. v8+, Stamatakis 2014) and output by PartitionFinder 1 and 2 (Lanfear et al. 2012, 2014), and both this format and the more traditional NEXUS charset format (i.e. begin sets; ... charset 1 = 1-xxx;) will be familiar to most users.

USAGE

Usage example:

$./PHYLIP2NEXUS.sh -p balf_clade_simData.partitions -f raxml ./balf_clade_simData.phy

##
PHYLIP2NEXUS v1.1, March 2018
##

INFO | Thu Mar 15 15:35:32 EDT 2018 | Setting user-specified path to:
/path/to/balf_clade/folder
INFO | Thu Mar 15 15:35:32 EDT 2018 | Input PHYLIP file: ./balf_clade_simData.phy
INFO | Thu Mar 15 15:35:32 EDT 2018 | Examining current directory, setting variables...
INFO | Thu Mar 15 15:35:32 EDT 2018 | Making NEXUS-formatted file...
INFO | Thu Mar 15 15:35:32 EDT 2018 | Read RAxML-style partitions file. Adding partition information to final NEXUS file...
INFO | Thu Mar 15 15:35:32 EDT 2018 | Removing temporary files...
INFO | Thu Mar 15 15:35:32 EDT 2018 | Done converting PHYLIP-formatted DNA sequence alignment to NEXUS format using PHYLIP2NEXUS.sh.
Bye.

$

REFERENCES

	Lanfear R, Calcott B, Ho SYW, Guindon S (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29,1695-1701.

	Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B (2016) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution.

	Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312-1313.

March 15, 2018
Justin C. Bagley, Richmond, VA

 fastSTRUCTURE

fastSTRUCTURE

THIS SCRIPT runs fastSTRUCTURE (Raj et al. 2014) to infer admixture groups, hence population genetic structuring, in a sample of unlinked, biallelic SNP loci present in the working directory.

Whereas the original script (“fastSTRUCTURE.sh”, available on my website) was written to be interactive, prompting the user for input at several points, this shell script provides users a means of running fastSTRUCTURE in non-interactive fashion, and thus must contain all information for a run internally.

Aside from dealing only with biallelic SNPs, the following code assumes that you have fastSTRUCTURE v1.0 installed locally and that you know the path to the directory containing it (structure.py) and other python scripts in the distribution. It is also assumed that, prior to installing fastSTRUCTURE, you correctly installed all of the following four dependencies:

1. Numpy(http://www.numpy.org/)
2. Scipy(http://www.scipy.org/)
3. Cython(http://cython.org/)
4. GNU Scientific Library (http://www.gnu.org/software/gsl/)

It is also assumed that your data are in the original Structure data format with the filename having the extension “.str”; however, it is important to note that when you enter the name of the input file below to assign it to the variable “fsInput”, you should enter this name WITHOUT the file extension. This is consistent with the default usage of fastSTRUCTURE.

This code takes you through all of the major steps of a simple fastSTRUCTURE analysis. However, the more complex models available in the software program, i.e. the logistic prior model, are not used; instead, the default setting is to run using the simple prior model. You can change this by calling the logistic model using the prior flag in fastSTRUCTURE, e.g. calling “–prior=logistic” when running “structure.py”. This code also follows the fastSTRUCTURE default NOT to run a cross-val